
International Journal of Computer Trends and Technology Volume 69 Issue 3, 1-4, March, 2021
ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I3P101 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Comparison of Apache SOLR Search Spellcheck

String Distance Measure – Levenshtein, Jaro

Winkler, and N-Gram

Parameswara Rao Kandregula1

1IT Consultant, Cognizant Technology Solutions, Houston, USA

Received Date: 12 January 2021
Revised Date: 01 March 2021

Accepted Date: 03 March 2021

Abstract - String Distance is one of the key metrics for string

comparison used in spell correction, and Levenshtein,

JaroWinkler, and N-Gram are famous string distance and

similarity measuring algorithms. Spelling mistakes are often

not more than two or three characters for the normal user

when typing on a website search functionality. In this article,

in the context of the e-commerce website, we will test and

compare the results of spellcheck distance measure
implementations provided by apache SOLR search, which

are Levenshtein, JaroWinkler, and N-Gram

Keywords - Search engine, SOLR, Natural language

processing, String distance, Levenshtein.

I. INTRODUCTION
String Distance is one of the key metrics in natural

language processing for string comparison used in spell

correction to identify the correct word for the miss-spelled

word. Levenshtien, JaroWinkler, and N-Gram are famous

string distance measuring algorithms. But common spelling

mistakes [6] are often not more than two or three characters

for the normal user when typing on a website search

functionality. And e-commerce websites are more keen on

selling products related to the input words. Thus, does it

really matter if we pick one algorithm over the other for a
normal e-commerce website search. In this article, we will

test and compare the results of spellcheck distance measure

implementations provided by apache SOLR search, which

are Levensthein [1], JaroWinkler [2], and N-Gram [3].

II. SOLR AND STRING DISTANCE

 Solr is the most famous open-source search engine built

on lucene, written in java, and used by several enterprises to

implement their search functionality with the capability to

handle millions of requests per second. As part of its

features, to implement spellcheck, it provides few spell

check implementations bundled. It also provides flexibility

to extend and implement custom implementations. It has a

base interface for string distance called

org.apache.lucene.search.spell.StringDistance [4]. It has a

method of getDistance(string s1, string s2) with returns

value between 0 to 1 based on how similar the parameter

strings s1 and s2 are. 0 means not at all similar and 1 being

exactly similar. Solr provides four implementations of it

using the famous similarity metrics approaches -

Levenshtein, JaroWinkler, and N-Gram:

 org.apache.lucene.search.spell.Levenshtein distance

 org.apache.lucene.search.spell.LuceneLevenshteinDis

tance

 org.apache.lucene.search.spell.JaroWinklerDistance

 org.apache.lucene.search.spell.NGramDistance

The edit distance between two strings s1 and s2, at a high

level is a number of letter level edits needs to make one

string similar to the other. Edit operations are like insert,

delete, substitute and transpose. All above-listed SOLR

implementations are implemented along with the edit

distance with added weightage and formula related to other
characteristics like prefix similarity, length, the distance

between letters, etc. LuceneLevenshteinDistance

implementation is not an efficient one and is recommended

by SOLR only to merge responses from other

implementations. Thus for this test, Lucene Levenshtein

Distance implementation has been excluded from the test

and comparison.

III. SOLR SPELL CHECK COMPARISON

The test were run locally using local solr on MacBook

using a dataset from Apache Solr and Kaggle as described

below:

A. Hardware and Software versions used

 MacOs Big Sur, Version 11.2.1

 Processor : 2.3 GHz Dua-Core Intel i5

 Memory; 8 GB 2133 MHz LPDDR3

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Parameswara Rao Kandregula / IJCTT, 69(3), 1-4, 2021

2

 Solr : 8.8.0

 Java : 12.0.1

 Jetty : 9.4.34.v20201102

B. Index Source Test Dataset
The test data of tech products bundled with solr has only

32 document records. The e-commerce product data set

found on Kaggle[5] was downloaded, columns modified,

added to tech products solr core, and used as index source for

the testing. The eventual test core has 20032 documents.

C. Source Dictionary Data
Spell Check needs a dictionary against which the correctly

spelled words can be derived after comparing with input mis-

spelled words. In solr, it can be a fixed dictionary file, or the

index of source test data itself can be used. We will be using

the index of source test data as the objective of the test is to

validate results from an e-commerce website perspective.

D. Solr SpellCheck Configuration Constants
Solr configuration constants related to spellcheck

components are as below. Of all, one of the configurations

worth noting is “MaxEdits’ i.e., the maximum number of

edits allowed. It is allowed to be either 1 or 2 only. Any word

misspelled with three or more characters would not be

producing any suggestions. This is as per guidelines that

most spelling mistakes are two in word by the user and also

the performance impact since search queries are expected to

be very fast. If there is a need to allow suggestions for more

than 2 edits, solr allows having custom implementation, plug

into solr, and use it. Anyhow for this test case, solr’s out-of-
the-box implementations have been used. By default

minimum prefix needed for spellcheck is 1, i.e., the starting

letter has to match. But since we wanted to compare the

impact of misspelled the first letter in a word, the

configuration value for the minimum prefix has been

changed to zero. Also, the collations have been set to

false(spellcheck.collate=false) as the test is more on single

word spell correction, and collation would anyhow take

corrections from individual words and then create a new

phrase. Another parameter is called spellcheck. The count

has been set to three, and it defines the maximum number of
suggestions requested.

 <!-- minimum accuracy needed to be considered a

valid spellcheck suggestion -->

 <float name="accuracy">0.5</float>

 <!-- the maximum #edits we consider when

enumerating terms: can be 1 or 2 -->

 <int name="maxEdits">2</int>

 <!-- the minimum shared prefix when enumerating

terms -->

 <int name="minPrefix">0</int>

 <!-- maximum number of inspections per result. -->

 <int name="maxInspections">5</int>

 <!-- minimum length of a query term to be

considered for correction -->

 <int name="minQueryLength">3</int>

 <!-- maximum threshold of documents a query term

can appear to be considered for correction -->

 <float name="maxQueryFrequency">0.01</float>

E. Solr Log Configuration
To capture the response time properly, the log level in solr

admin using log4j2 for org.eclipse.jetty.server.* has been set

to all levels. Initial test response times were not showing
much difference as they were logged in microseconds. Log

level timestamp has been changed to capture time at

nanosecond level : yyyy-MM-dd HH:mm: ss,nnnnnnnnn.

F. Solr SpellCheck Component
Three custom solr spellcheck components have been

created in solrconfig.xml. They were named levenh,

jarowink, and ngram, each map to solr spell check

implementations correspondingly to - LevenshteinDistance,
JaroWinklerDistance, and NGramDistance.

G. Spell Check Test Data
Since solr index is used as a dictionary source, the test

data has to be selected based on the words in the solr index

documents, and else there would be no suggestions post spell

check. Thus the words in test documents were examined, and

below words picked to use for this test.

Table 1. Input Test Data

H. Test Cases Execution
For each of the words from the test data, three tests were

run on solr spellcheck, one each for

LevenshteinDistance(levenh),

JaroWinklerDistance(jarowink), and
NGramDistance(ngram). For noting response time, the server

restarted before each set of executions for lvenh, jarowink.

And ngrams. The restart is necessary to clear caches and

avoid skewing the response time captured.

Parameswara Rao Kandregula / IJCTT, 69(3), 1-4, 2021

3

IV. OUTPUT AND ANALYSIS

For each of the execution, related output data were

captured – i) list of suggestions if any returned ii) is the

desired word returned in suggestions iii) string distance

measure between misspelled and desired word in the scale of
0 to 1. iv) response time in nanoseconds.

A. List of suggestions

List of suggestions(if any) for each of the word in test data

from spell check using each of the string distance

implementation of solr is as below:

Table 2. List of Suggestions

B. The desired word returned (yes/no)

If the desired word was returned for each of the words

from test data against each of the string distance

implementation of solr is as below:

Table 3. Desired Word Returned (Yes/No)

C. String Distance Measurer (0 to 1)

Sting distance was measured using the strdist function

provided with solr, which takes three parameters: two

parameters as strings for comparison and the third being the

distance measure to use to compare the two strings. String

Distance Measure for each of the word from test data against

each of the string distance implementation of solr is as

below:

Table 4. String Distance Measure (0 to 1)

Fig. 1 String Distance Measurer (0 to 1)

D. Response Time

Response Time for each of the word from test data against

each of the string distance implementation of solr is as
below:

Table 5. Response Time

Parameswara Rao Kandregula / IJCTT, 69(3), 1-4, 2021

4

Fig. 2 Response Time

E. Analysis and Derivations

All the three (LevenshteinDistance, JaroWinklerDistance,

and NGramDistance) returned an almost similar set of

suggestions. Levenshtein distance and NGramDistance were

identical

All had the desired word in the returned suggestions

except for “multicolor” and “ceramic.” Interestingly all three
had negative results for the same two words.

All three had almost similar string distance.

LevenstheinDistance and NGramDistance are almost

identical, and JaroWinklerDistance had a small difference

from the other two in string distance. Even the

words(“multicolor” and “ceramic”) which did not have the

desired word in the returned list of suggestions have decent

string distance similarity. There might have been other

limitations like the number for comparisons limit, which

would have made it not result from those two words as

suggestions.

Even from performance wise also there isn’t much to

choose between the three. Levenshtein distance had

negligible increased response time in few cases.

VI. CONCLUSION
All the three solr string distance implementations behaved

similarly in the test conditions. But the context of the testing

is for e-commerce site data. Thus linguistic accuracy need

not be a hundred percent achieved, and understanding user

intent and user retention on a website are more important.

The user-desired word might not be sold by the website;

thus, the dictionary for the website should always be picked

from website records to avoid showing word suggestions that

do not have any products sold by the website. As long as the

closest desired word is returned, the results can be tuned to
the benefit of business and user, like boosting the desired

products or adding contextual weightage to the search

request. Even if the first suggested word is not what the user

is looking for, websites can easily use the “did you mean”

feature and show the remaining suggestions. In addition to

spellcheck, Solr also provides query intent and training data

to apply machine learning to return results as a closet to the

user’s intent and to serve business needs at the same time.

If the same is used for scientific analysis like DNA

comparison, then more analysis is needed to check if these

string distance implementations are apt for them. All the

three give added weightage if the starting of string matches,
thus in use cases in which all the positions of string to

compare are equally important, then these might not give the

desired results. Anyhow, such cases are restricted to very few

fields like medical, etc., and for most of the rest, these would

equally work with great results and performance and options

to tune.

ACKNOWLEDGMENT
Would like to thank the apache foundation for making

solr, a powerful search engine as open source and all the

volunteer contributors from worldwide who regularly

maintain solr, document it, add features and keep it to the
highest standards

REFERENCES
[1] Levenshtein distance. [Online]. Available:

https://en.wikipedia.org/wiki/Levenshtein_distance

[2] Jaro Winkler distance. [Online]. Available:

https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance

[3] N-Gram distance. [Online]. Available:

https://lucene.apache.org/core/8_0_0/suggest/org/apache/lucene/searc

h/spell/NGramDistance.html

[4] Solr StringDistance [Online]. Available:

https://lucene.apache.org/core/8_0_0/suggest/org/apache/lucene/searc

h/spell/StringDistance.html

[5] Kaggle Flipkart Products Data [Online]. Available:

https://www.kaggle.com/PromptCloudHQ/flipkart-products

[6] Common spelling mistakes [Online]. Available:

https://www.lexico.com/grammar/common-misspellings

